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Differential Geometry of Spacetime Tangent Bundle 
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Conditions are investigated under which the Levi-Civita connection of the space- 
time tangent bundle corresponds to that of a generic tangent bundle of a Finsler 
manifold. Also, requirements are specified for the spacetime tangent bundle to 
be almost complex or K/ihlerian. 

1. S P A C E T I M E  T A N G E N T  BUNDLE 

Both string theory and the quantum mechanics of  the vacuum polariza- 
tion in accelerated frames determine a universal upper limit on allowable 
proper acceleration relative to the vacuum (Brandt, 1983, 1984a, 1989a, 
1991 a,b; Sakai, 1986; Parentani and Potting, 1989). I f  the limiting accelera- 
tion is universal, then it must apply invariantly for all observers. The latter 
requirement defines the maximal-acceleration invariant phase space as a fiber 
bundle in which spacetime is the base manifold and four-velocity space is 
the fiber manifold (Brandt, 1984b, 1987a,b, 1989a-c, 1991a,b). In a coordi- 
nate basis, the implied structure of  the bundle metric GAB is that of  the 
diagonal lift (Yano and Ishihara, 1973) of  the spacetime metric guy, namely, 

G ={g~+g~#A~uAav Ag,~) (1) 
A B  \A,nv 

where AUv is the gauge potential, 

A m v = p0vXFUzv (2) 
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and FUxv is the spacetime affine connection. A point in the bundle manifold 
has coordinates 

{xM; M = 0 ,  1 . . . . .  7} = {xU, x ' ;  p =0 ,  1, 2, 3; m = 4 ,  5, 6, 7} 

= { x  u, potY; p =0,  1, 2, 3} 
(3) 

where x u and v u are the spacetime and four-velocity coordinates, respec- 
tively. Greek indices referring to spacetime range from 0 to 3, lower case 
Latin indices referring to four-velocity space range from 4 to 7, and upper 
case Latin indices referring to a point in the bundle range from 0 to 7. 
Any lower case Latin index n appearing in a canonical spacetime tensor or 
connection is defined to be n -  4 implicitly. The length P0 is of  the order of  
the Planck length and is given by 

Po = c2 / ao = ( I i G / c 3 ) ' / 2 / 2  7r ct (4) 

where a0 is the maximal proper acceleration relative to the vacuum, c is the 
velocity of light in vacuum, h is Planck's constant divided by 2~r, G is the 
universal gravitational constant, and a is a dimensionless number of  order 
unity (Brandt, 1983, 1984a, 1989a, 1991a,b). 

In an anholonomic basis adapted to the affine connection (Brandt, 
1989a, 1987b; Yano and Ishihara, 1973) the bundle metric has the simple 
block diagonal form 

and the Levi-Civita connection coefficients (S)F~tAB of the bundle manifold 
are given by (Brandt, 1989a) 

( 8 ) F ~  = {ut~) = �89 (g~z,t~ + g/~x,- - g~p,z) (6) 

(s)ru. ~b---- (S)r.u. b~ -- 2~'~,~--!tw u + i1%,~ + l-l,,b ~) (7) 

( 8 ) F " a b  = - -  � 8 9  + T b U a )  ( 8 )  

(S)F'%, = �89 - H/"p  - H i %  ) (9) 

(8)r".b = �89 + T ' a b )  (10) 

(~ )v ' %  = { ' % }  • " ~  " 
- ~ b,~ - T ' % b )  (11) 

(8) l - ,m - -  i--ira __ 1 ~ - -  I t n n g ~ / ~ , a  ...1_ ,~/,,,q,,b 
I a b  - - 1 1  ab - -  2VO g ~,~1,~,~ g n b  " U l U V  g., ,  - O / O O n g a b )  ( 1 2 )  
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Here {uag} and rlua0 are the Christoffel symbols in spacetime and four- 
velocity space, respectively, and in the anholonomic basis, the following 
notation is implicit: 

. ,  - O/Ox" - p o  ~A",, O /Ov  ~ (13) 

In addition, F~u~ is the gauge curvature field given by 

F'~u ~ = pov~ R'~ w ~ (14) 

where R~':tu~ is the spaeetime Riemann curvature tensor. The field Tt~u~ is 
given by 

r ~ , v  = {',~} - po '  0/~o ~ A",  (15) 

In general, the spacetime base manifold of the maximal-acceleration 
invariant fiber bundle is non-Riemannian. The physical interpretations and 
applications of such a general spacetime bundle manifold remain to be 
explored. Recently, as a very special case, a Riemannian spacetime manifold 
was considered for the base manifold, and it was shown that in this case the 
bundle manifold is the associated tangent bundle, and the natural lift of a 
spacetime geodesic is also a geodesic in the spacetime tangent bundle (Yano 
and Ishihara, 1973; Yano and Davies, 1963; Brandt, 1991c). Conversely, if 
the natural lift of a curve in Riemannian spacetime is a geodesic in the 
spacetime tangent bundle, then either (a) the spacetime curve is a geodesic, 
or (b) its proper acceleration is a nonvanishing constant, and the Riemann 
sectional curvature with respect to the section determined by the osculating 
plane of the spacetime curve is constant at every point and given by the 
inverse square of P0. Also, a Riemannian Schwarzschild-like spacetime was 
considered which is a solution following from an appropriate action defined 
on the spacetime tangent bundle (Brandt, 1991a). Possible modifications 
were calculated to the canonical red shift formula for a Schwarzschild space- 
time. It is of interest to consider more general base manifolds, such as Finsler 
spacetime (Bejancu, 1990). 

2. FINSLER SPACETIME 

If the spacetime manifold is a Finsler manifold, then it has the following 
form: 

guv(x, v) =�89 02/0~ Ov ~ L2(x, v) (16) 

where L(x,  v) is the fundamental function, a scalar on the spacetime tangent 
bundle (Yano and Ishihara, 1973; Bejancu, 1990). The Finsler spacetime 
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metric is also homogeneous of degree zero, from which it follows that 

v a O/Ov" g ~ = 0  (17) 

Also, from equation (16) it follows that 

O/Ov '~ g~,~ = O/do n g ,  v (18) 

Therefore, substituting equation (18) in equation (17), one obtains 

v" O/Ov '~ g u v = V  " 0 / 0 ~  g , , v=O (19) 

or equivalently 

v ~ H w ~  ~) = v C'II(,w ~) = 0 (20) 

Here and throughout, the following notations are employed: 

T"..Wv). =- T"..u~. + T"..vu. 

and 

T"..Luv I. =- T " . 4 , v . -  T"..v~. 

If the spacetime affine connection FUap is of the Levi-Civita form, 
namely, 

F%~ = {~-a} (21) 

and the spacetime manifold is Finslerian, then equations (6)-(12) are readily 
shown to be of the same form as the well-known Levi-Civita connection 
coefficients for a generic tangent bundle of a Finsler manifold [equations 
(3.12a)-(3.12h) of Yano and Davies (1963)1. The connection coefficients are 
consistent with Cartan's theory of Finsler space, provided the gauge curva- 
ture field P'ap is vanishing. Furthermore, if the spacetime metric is inde- 
pendent of the four-velocity, then the coefficients reduce to the form 
corresponding to a tangent bundle of a Riemannian base manifold (Yano 
and Ishihara, 1973 ; Yano and Davies, 1963; Brandt, 1991c). 

3. ALMOST COMPLEX STRUCTURE 

To further characterize the differential geometry of the spacetime tan- 
gent bundle, it is of interest to consider the one-form co defined in the 
spacetime tangent bundle by 

co = po v u dx  u = P og ~, v v v dx  ~ (22) 

Its exterior differential is readily shown to be 

do) =�89 dx  a ^ dx  s (23) 
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where 

V ;~ _ poI'I(abZ)O x) r {P0 {[a,~l~} --gab (24/ 

If the spacetime connection has the Levi-Civita form and the spacetime is 
Finslerian, then using equations (1), (21), and (20), one obtains 

e [AOa --Sbb--A,~a Ab'~] (25) 
JA =~5oo - A  a } 

Next one verifies that 

JA~ n= - S  A B (26) 

which is the requirement for Ja n to be an almost complex structure (Yano 
and Ishihara, 1973; Yano and Davies, 1963: Yano, 1965). Thus, the space- 
time tangent bundle of a Finsler spacetime manifold is almost complex, with 
almost complex structure given by equation (25). 

In the anholonomic frame adapted to the spacetime affine connection, 
the almost complex structure, equation (25), for a Finsler spacetime mani- 
fold becomes 

Next, it is of interest to consider VeJA n, where Ve is the covariant derivative 
involving the Levi-Civita bundle connection ~8)FAnc. Using equations (6)- 
(12) and (27), we find that the components of VeJ,4 s reduce to 

V~ Ja p = �89 t ~ -  F~a ~ + Ha p ~ - l-It~ ~) (28) 

b I b V, Ja =~(T ,a - Ta~ b) (29) 

v J . '  = ~(r"~o- ro~') (30) 

V~j ,b=_!eFb  _ F  b + l i b  _ l l  b -~ (31) 2k a g ag a ~ a~:] 

V e J a  # = �89 Te#a - Tea # + T a O e -  Taae) ( 3 2 )  

b 1 b V, Ja =-~(Fea +Habe--rlbea) (33) 

VeJa 13 = �89 + I1.r liae.) (34) 
b__ 1 b VeJa - - '2( Ze a -  L a  b-.[- Zabe - Zbae) ( 3 5 )  



580 Brandt 

For the Finsler spacetime manifold, all possible contributions in equations 
(28)-(35) involving combinations of IIU~a and TJ'~a can be shown, using 
equations (I 5)-(21), to be vanishing. It follows that if the spacetime mani- 
fold is Finslerian and the gauge curvature field F~'~t~ is vanishing, then 
equations (28)-(35) are also vanishing, and one concludes that (Yano and 
Ishihara, 1973; Yano and Davies, 1963) 

VeJA n = 0 (36) 

Equation (36) is the condition that the spacetime tangent bundle be 
K~ihlerian (Yano and Ishihara, 1973; Yano and Davies, 1963; Yano, 1965). 
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